Kinetic gating of the proton pump in cytochrome c oxidase.

نویسندگان

  • Young C Kim
  • Mårten Wikström
  • Gerhard Hummer
چکیده

Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain, reduces oxygen to water and uses the released energy to pump protons across a membrane. Here, we use kinetic master equations to explore the energetic and kinetic control of proton pumping in CcO. We construct models consistent with thermodynamic principles, the structure of CcO, experimentally known proton affinities, and equilibrium constants of intermediate reactions. The resulting models are found to capture key properties of CcO, including the midpoint redox potentials of the metal centers and the electron transfer rates. We find that coarse-grained models with two proton sites and one electron site can pump one proton per electron against membrane potentials exceeding 100 mV. The high pumping efficiency of these models requires strong electrostatic couplings between the proton loading (pump) site and the electron site (heme a), and kinetic gating of the internal proton transfer. Gating is achieved by enhancing the rate of proton transfer from the conserved Glu-242 to the pump site on reduction of heme a, consistent with the predictions of the water-gated model of proton pumping. The model also accounts for the phenotype of D-channel mutations associated with loss of pumping but retained turnover. The fundamental mechanism identified here for the efficient conversion of chemical energy into an electrochemical potential should prove relevant also for other molecular machines and novel fuel-cell designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis

Department of Chemistry and Theoreti Wisconsin–Madison, 1101 University Aven [email protected] † Electronic supplementary information the DFTB3 approach for the copper site are included; validation of DFTB3/MM in is also included. Additional PMF results DFTB are included to demonstrate th Comparison of PMF and microscopic p validation. Other materials include conformers of the Glu286 side chain...

متن کامل

Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.

Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradi...

متن کامل

Coupled proton and electron transfer reactions in cytochrome oxidase.

Cytochrome oxidase catalyzes the four-electron reduction of O2 to water and conserves the substantial free energy of the reaction in the form of a protonmotive force. For each electron, two full charges are translocated across the membrane, resulting in a voltage. One of the mechanisms to generate the charge separation in cytochrome oxidase is via a proton pump. A single reaction cycle can be m...

متن کامل

Kinetic models of redox-coupled proton pumping.

Cytochrome c oxidase, the terminal enzyme of the respiratory chain, pumps protons across the inner mitochondrial membrane against an opposing electrochemical gradient by reducing oxygen to water. To explore the fundamental mechanisms of such redox-coupled proton pumps, we develop kinetic models at the single-molecule level consistent with basic physical principles. We demonstrate that pumping a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 33  شماره 

صفحات  -

تاریخ انتشار 2009